Ковер Серпинского - Фракталы - Физика - Каталог статей - AlexLat
Главная » Статьи » Физика » Фракталы

Ковер Серпинского
 

Рис 2.3.1. Ковер Серпинского



      
Пусть начальное множество S0 --- равносторонний треугольник вместе с
областью, которую он замыкает. Разобьем S0 на четыре меньшие
треугольные области, соединив отрезками середины сторон исходного треугольника.
Удалим внутренность маленькой центральной треугольной области. Назовем
оставшееся множество S1 (рис. 2.3.2). Затем повторим процесс для
каждого из трех оставшихся маленьких треугольников и получим следующее
приближение S2. Продолжая таким образом, получим последовательность
вложенных множеств Sn, чье пересечение образует ковер S.
Из построения видно, что весь ковер представляет собой объединение N = 3
существенно не пересекающихся уменьшенных в два раза копий; коэффициент
подобия r = ½ (как по горизонтали, так и по вертикали). Следовательно,
S --- самоподобный фрактал с размерностью:
                           d = log(3)/log(2) ~ 1,5850.                           
     Рис. 2.3.2. Построение ковра Серпинского
      
Очевидно, что суммарная площадь частей, выкинутых при построении, в точности
равна площади исходного треугольника. На первом шаге мы выбросили ¼
часть площади. На следующем шаге мы выбросили три треугольника, причем площадь
каждого равна ¼ 2 площади исходного. Рассуждая таким
образом, мы убеждаемся, что полная доля выкинутой площади составила:
1/4 + 3*(1/42) + 32*(1/43) + . + 3n-1*(1/4n) + . .
Эта сумма равна 1 (доказательство в [1]). Следовательно, мы можем утверждать,
что оставшееся множество S, то есть ковер, имеет площадь меры нуль. Это
выделяет множество S в разряд «совершенного», в том смысле, что оно разбивает
свое дополнение на бесконечное число треугольных областей, обладая при этом
нулевой толщиной.

Категория: Фракталы | Добавил: alexlat (25.04.2012)
Просмотров: 449 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]