Главная » Статьи » Химия » Химия

Титан

Титан (Titanium), Ti,— химический элемент IV группы периодической системы элементов Д. И. Мен­делеева. Порядковый номер 22, атомный вес 47,90. Состоит из 5 устойчивых изотопов; получены также искус­ственно радиоактивные изотопы.

В 1791 году английский химик У. Грегор нашёл в песке из местечка Менакан (Англия, Корнуолл) новую «зем­лю», названную им менакановой. В 1795 году немецкий хи­мик М. Клаирот открыл в минерале рутиле неиз­вестную еще землю, металл которой он назвал Титан [в греч. мифологии титаны — дети Урана (Неба) и Геи (Земли)]. В 1797 году Клапрот доказал тождество этой земли с открытой У. Грегором. Чистый титан выде­лен в 1910 году американским химиком Хантером посредством восстановления четырёххлористого титана натрием в же­лезной бомбе.

Нахождение в природе

Титан относится к числу наиболее распространённых в природе элементов, его содержание в земной коре составляет 0,6% (весовых). Встречается главным образом в ви­де двуокиси TiO2 или её соединений — титанатов. Известно свыше 60 минералов, в состав которых входит титан Он содержится также в поч­ве, в животных и растительных организмах. Ильме­нит FeTiO3 и рутил TiO2 служат основным сырьём для получения титана. В качестве источника титана приобретают значение шлаки от плавки титано-магнетитов и ильменита.

Физические и химические свойства

Титан существует в двух состояниях: аморфный — темносерый порошок, плотность 3,392—3,395г/см3, и кристаллический, плотность 4,5 г/см3. Для кристаллического титана известны две модификации с точкой перехода при 885° (ниже 885° устойчивая гексагональная фор­ма, выше — кубическая); t°пл около 1680°; t°кип выше 3000°. Титан активно поглощает газы (водород, кислород, азот), которые делают его очень хрупким. Технический металл поддаётся горячей обработ­ке давлением. Совершенно чистый металл может быть прокатан на холоду. На воздухе при обыкновенной температуре титан не изменяется, при накаливании образует смесь окиси Ti2O3 и нитрида TiN. В токе кислорода при красном калении окисляется до двуокиси TiO2. При высоких температурах реаги­рует с углеродом, кремнием, фосфором, серой и др. Устойчив к морской воде, азотной кислоте, влажному хлору, органическим кислотам и сильным щелочам. Рас­творяется в серной, соляной и плавиковой кислотах, лучше всего — в смеси HF и HNO3. Добавление к кислотам окислителя предохраняет металл от кор­розии при комнатной температуре. Галогениды четырёхвалентного титана, за исключением TiCl4 — кристаллические тела, легкоплавкие и летучие в водном растворе гидрализованы, склонны к образованию комплексных соединений, из которых в технологии и аналитической практике имеет значение фтортитанат калия K2TiF6. Важное значение имеют карбид TiC и нитрид TiN— металлоподобные вещества, отличающиеся большой твёрдостью (карбид титан тверже карборунда), туго­плавкостью (TiC, t°пл = 3140°; TiN, t°пл = 3200°) и хо­рошей электропроводностью.

Химический элемент №22. Титан.

Электронная формула титана имеет вид: 1s2|2s22p6|3s23p63d2|4s2.

Порядковый номер титана в периодической системе химических элементов Д.И. Менделеева — 22. Номер элемента обозначает заряд ярда, следовательно у титана заряд ядра - +22, масса ядра — 47,87. Титан находится в четвертом периоде, в побочной подгруппе. Номер периода указывает на количество электронных слоев. Номер группы обозначает количество валентных электронов. Побочная подгруппа указывает на то, что титан относится к d-элементам.

Титан имеет два валентных электрона на s-орбитали внешнего слоя и два валентных электрона на d-орбитали предвнешнего слоя.

Квантовые числа для каждого валентного электрона:


3d1

3d2

4s1

4s2

N

3

3

4

4

l

2

2

0

0

ml

-2

-1

0

0

ms

+1/2

+1/2

+1/2

-1/2

Распределение валентных электронов по энергетическим уровням:

↑↓

4s




3d

В возбужденном состоянии один электрон с 4s-орбитали перескакивает на 3d, образуя ковалентность равную четырем:

4s



3d

С галогенами и водородом Ti(IV) образует соединения вида TiX4, имеющие sp3→q4 вид гибридизации.

Титан — металл. Является первым элементом d-группы. Наиболее устойчивым и распространенным является Ti+4. Так же существуют соединения с более низкими степенями окисления — Ti0, Ti-1, Ti+2, Ti+3, но эти соединения легко окисляются воздухом, водой или другими реагентами в Ti+4. Отрыв четырех электронов требует больших затрат энергии, поэтому ион Ti+4 реально не существует и соединения Ti(IV) обычно включают связи ковалентного характера. Ti(IV) в некоторых отношениях сходен с элементами — Si, Ge, Sn и Pb, особенно с Sn.

Свойства соединений титана.

Оксиды титана:

Ti(IV) — TiO2 — Двуокись титана. Имеет амфотерный характер. Наиболее устойчив и имеет наобольшее практическое значение.

Ti(III) — Ti2O3 — окись титана. Имеет основной характер. Устойчив в растворе и является сильным восстановителем, как и остальные соединения Ti(III).

TI(II) — TiO2 - Закись титана. Имеет основной характер. Наименее устойчив.

Двуокись титана, ТiO2, — соединение ти­тана с кислородом, в котором титан четырёхвалентен. Белый порошок, желтый в нагретом состоянии. Встречается в природе главным образом в виде минерала ру­тила, t°пл выше 1850°. Плотностъ 3,9 — 4,25 г/см3. Практически нерастворима в щелочах и кислотах, за исключением HF. В концентрированной Н2SO4 растворяется лишь при длительном на­гревании. При сплавлении двуокиси титана с едкими или угле­кислыми щелочами образуются титанаты, которые легко гидролизуются с образованием на холоду ортотитановой кислоты (или гидрата) Ti(OH)4, легко рас­творимой в кислотах. При стоянии она переходит в мстатитановую кислоту (форма), имеющую микрокристаллическую структуру и растворимую лишь в горя­чей концентрированной серной и фтористоводородной кислотах. Большинство титанатов практически нерастворимы в воде. Основные свойства двуокиси титана выра­жены сильнее кислотных, но соли, в которых титан является катионом, также в значительной мере гид­ролизуются с образованием двухвалентного радикала титанила TiO2+. Последний входит в состав солей в качестве катиона (например, сернокислый титанил TiOSO4*2H2O). Двуокись титана является одним из важнейших соединений титана, служит исходным материа­лом для получения других его соединений, а также частично металлического титана. Используется главным образом как минеральная краска, кроме того, как наполнитель в производстве резины и пластических металлов. Входит в состав тугоплавких стекол, глазурей, форфоровых масс. Из нее изготов­ляют искусственные драгоценные камни, бесцветные и окрашенные.

Диоксид титана не растворяется в воде и разбавленных минеральных кислотах (кроме плавиковой) и разбавленных растворах щелочей.

Медленно растворяется в концентрированной серной кислоте:

TiO2+ 2H2SO4 = Ti(SO4)2 + 2H2O

С пероксидом водорода образует ортотитановую кислоту H4TiO4:

TiO2 + 2H2O2 = H4TiO4

В концентрированных растворах щелочей:

TiO2 + 2NaOH = Na2TiO3+ H2O

При нагревании диоксид титана с аммиаком образует нитрид титана:

2TiO2 + 2NH3 = 2TiN + 3H2O + O2

В насыщенном растворе гидрокарбоната калия:

TiO2 + 2KHCO3 = K2TiO3 + H2O + 2CO2

При сплавлении с оксидами, гидроксидами и карбонатами образуются титанаты и двойные оксиды:

TiO2 + BaO = BaO∙TiO2(BaTiO3)

TiO2 + BaCO3 = BaO∙TiO2 + CO2(BaTiO3)

TiO2 + Ba(OH)2 = BaO∙TiO2(BaTiO3)

Гидроксиды титана:

H2TiO3 — П.Р. = 1,0∙10-29

H2TiO4 - П.Р. = 3,6∙10-17

TIO(OH)2 - П.Р. = 1,0∙10-29

Ti(OH)2  - П.Р. = 1,0∙10-35

Гидроскида Ti(IV) — Ti(OH)4 или H4TiO4 - ортотитановой кислоты по видимому вообще не существует, а осадок, выпадающий при добавлении оснований к растворам солей Ti(IV), представляет собой гидратированную форму TiO2. Это вещество растворяется в кончентрированных щелочах, и из таких растворов можно выделить гидратированные титанаты общей формулы: M2TiO3∙nH2O и M2Ti2O5∙nH2O.

Для титана характерно комплексообразование с соответствующими галогеноводородными кислотами и особенно с их солями. Наиболее типичны комплексные производные с общей формулой Мe2TiГ6 (где Мe — одновалентный металл). Они хорошо кристаллизуются и подвергаются гидролизу гораздо менее, чем исходные галогениды TiГ4. Это указывает на устойчивость комплексных ионов TiГ6 в растворе.

Окраска производных титана сильно зависит от природы входящего в них галогена:

Устойчивость солей комплексных кислот типа Н2ЭГ6, в общем, возрастает по ряду Ti-Zr-Hf и уменьшается в ряду галогенов F-Cl-Br-I.

Производные трёхвалентных элементов более или менее характерны лишь для титана. Тёмно-фиолетовый оксид Тi2O3 (т. пл. 1820 °С) может быть получен прокаливанием TiO2 до 1200 °C в токе водорода. В качестве промежуточного продукта при 700-1000 °С образуется синий Ti2O3.

В воде Ti2O3 практически нерастворим. Его гидроксид образуется в виде тёмно-коричневого осадка при действии щелочей на растворы солей трёхвалентного титана. Он начинает осаждаться из кислых растворов при рН = 4, имеет только основные свойства и в избытке щелочи не растворяется. Однако производящиеся от HTiO2 титаниты металлов (Li, Na, Mg, Mn) были получены сухим путём. Известна также сине-чёрная "титановая бронза” состава Na0,2TiO2.

Гидроксид титана (III) легко окисляется кислородом воздуха. Если в растворе нет других способных окисляться веществ, одновременно с окислением Ti(OH)3 идёт образование пероксида водорода. В присутствии Са(ОН)2 (связывающего Н2О2) реакция протекает по уравнению:

2Ti(ОН)3 + O2 + 2H2O = 2Ti(OH)4 + H2O2

Азотнокислые соли Тi(OH)3 восстанавливает до аммиака.

Фиолетовый порошок ТiCl3 может быть получен пропусканием смеси паров ТiCl4 c избытком водорода сквозь нагретую до 650 °С трубку. Нагревание вызывает его возгонку (с частичным образованием димерных молекул Ti2Cl6) и затем дисмутацию по схеме:

2TiCl3 = TiCl4 + TiCl2

Интересно, что уже при обычных условиях тетрахлорид титана постепенно восстанавливается металлической медью, образуя чёрное соединение состава CuTiCl4 (т. е. СuCl·TiCl3).

Трёххлористый титан образуется также при действии на TiCl4 водорода в момент выделения (Zn + кислота). При этом бесцветный раствор окрашивается в характерный для ионов Ti3+ фиолетовый цвет, и из него может быть выделен кристаллогидрат состава ТiCl3·6H2O. Известен и малоустойчивый зелёный кристаллогидрат того же состава, выделяющийся из насыщенного HCl раствора TiCl3. Структуре обеих форм, равно как и аналогичных кристаллогидратов СrCl3, отвечают формулы [Ti(Н2O)6]Cl3 и [Ti(Н2O)4Cl2]Cl·2Н2О. При стоянии в открытом сосуде раствор TiCl3 постепенно обесцвечивается ввиду окисления Ti3+ до Ti4+ кислородом воздуха по реакции:

4TiCl3 + O2 +2H2O = 4TiOCl2 + 4HCl.

Ион Тi3+ является одним из очень немногих восстановителей, довольно быстро восстанавливающих (в кислой среде) перхлораты до хлоридов. В присутствии платины Тi3+ окисляется водой (с выделением водорода).

Безводный Ti2(SO4)3 имеет зелёный цвет. В воде он нерастворим, а раствор его в разбавленной серной кислоте имеет обычную для солей Ti3+ фиолетовую окраску. От сульфата трёхвалентного титана производятся комплексные соли, главным образом типов Мe[Ti(SO4)2]·12H2O (где Мe — Сs или Rb) и Me[Ti3(SO4)5] (с переменным в зависимости от природы катиона содержанием кристаллизационной воды).

Теплота образования TiO (т. пл. 1750 °С) составляет 518 кДж/моль. Он получается в виде золотисто-жёлтой компактной массы нагреванием в вакууме до 1700 °С спрессованной смеси TiO2 + Ti. Интересным способом его образования является термическое разложение (в высоком вакууме при 1000 °С) нитрила титанила. Похожий по виду на металл, тёмно-коричневый TiS получен прокаливанием TiS2 в токе водорода (первоначально при этом образуются сульфиды промежуточного состава, в частности Ti2S3). Известны также TiSe, TiTe и силицид состава Ti2Si.

Все TiГ2 образуются при нагревании соответствующих галогенидов TiГ3 без доступа воздуха за счёт их разложения по схеме:

2TiГ3 = TiГ4 + TiГ2

При несколько более высоких температурах галогениды TiГ2 сами подвергаются дисмутации по схеме: 2TiГ2 = TiГ4 + Ti

Двухлористый титан может быть получен также восстановлением TiCl4 водородом при 700 °С. Он хорошо растворим в воде (и спирте), а с жидким аммиаком даёт серый аммиакат TiCl2·4NH3. Раствор TiCl2 может быть получен восстановлением TiCl4 амальгамой натрия. В результате окисления кислородом воздуха бесцветный раствор TiCl2 быстро буреет, затем становится фиолетовым (Ti3+) и, наконец, вновь обесцвечивается (Ti4+). Получаемый действием щёлочи на раствор TiCl2 чёрный осадок Ti(OH)2 исключительно легко окисляется.

Состояние электролита в растворе.

Для элементов подгруппы титана характерны пероксидные соединения. Пероксид титана даже в ничтожных концентрациях сообщает водному раствору интенсивную жёлтую окраску. Его образованием (в сильнокислой среде) пользуются поэтому как чрезвычайно чувствительной реакцией и на титан и на пероксид водорода. Ответственным за окраску является ион (TiO)2+, содержащий пероксидную группу в трёхчленном цикле с титаном. Отвечающий ему сульфат был выделен в виде красного кристаллогидрата ТiO2SO4·3H2O. Связь между устойчивым в кислой среде пероксокатионом и устойчивым в щелочной среде пероксоанионом может быть представлена уравнением:

(TiO2)2+ + 3H2O2 = (TiO8)4- + 6H+

Так как основные свойства гидроксидов Тi(IV) и его аналогов выражены сильнее кислотных, по отношению к воде соли бесцветных катионов Э4+ устойчивее титанатов, цирконатов и гафнатов. Но гидролиз этих солей очень значителен и даже в крепких растворах ведёт к образованию двухвалентных катионов титанила (TiO)2+, цирконила (ZrO)2+ и гафнила (HfO)2+ по схеме:

Э4+ + Н2О = (ЭО)2+ + 2Н+

Многие соли титана и его аналогов являются производными именно этих радикалов, а не Э4+. Например, (TiO)SO4·2H2O. Дальнейший их гидролиз (особенно производных титана) идёт в меньшей, но всё же сильной степени.

Сульфат четырёхвалентного титана Ti(SO4)2 образуется при взаимодействии ТiCl4 c SO3 и SO2Cl2. Он представляет собой бесцветное, чрезвычайно гигроскопичное вещество. Его термическое разложение (в атмосфере сухого аргона) идёт с отщеплением SO3 и образованием ТiOSO4 (выше 150) или ТiO2 (выше 430 °С). В водной среде может быть получен только сульфат титанила — ТiOSO4·2H2O.

При одновременном наличии избытка КNCS сульфат титанила медленно растворяется в жидком аммиаке. Из образующегося красного раствора был выделен комплексный роданид состава К2[TiO (NCS)4]·2NH3, а действием на него КNH2 получен бурый амид титанила — ТiO(NH2)2, медленно гидролизующийся во влажном воздухе. Под действием избытка КNH2 он переходит в оранжево-коричневый ТiO(NHK)2 вспыхивающий при соприкосновении с воздухом и водой. Нагревание ТiO(NH2)2 сопровождается отщеплением аммиака и образованием сине-чёрного нитрида титанила — (TiO)3N2. Последний не взаимодействует с водой и разбавленными растворами кислот или щелочей, а при нагревании на воздухе переходит в TiO2.

Категория: Химия | Добавил: alexlat (26.06.2012)
Просмотров: 5606 | Рейтинг: 5.0/1
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]