Использование критерия Фишера для проверки значимости регрессионной модели - Математика - Математика - Каталог статей - AlexLat
Главная » Статьи » Математика » Математика

Использование критерия Фишера для проверки значимости регрессионной модели

Использование критерия Фишера для проверки значимости регрессионной модели


Критерий Фишера для регрессионной модели отражает, насколько хорошо эта модель объясняет общую дисперсию зависимой переменной. Расчет критерия выполняется по уравнению:


где R - коэффициент корреляции;
      f1 и f2 - число степеней свободы.

Первая дробь в уравнении равна отношению объясненной дисперсии к необъясненной. Каждая из этих дисперсий делится на свою степень свободы (вторая дробь в выражении). Число степеней свободы объясненной дисперсии f1 равно количеству объясняющих переменных (например, для линейной модели вида Y=A*X+B получаем f1=1). Число степеней свободы необъясненной дисперсии f2 = N-k-1, где N-количество экспериментальных точек, k-количество объясняющих переменных (например, для модели Y=A*X+B подставляем k=1).
Еще один пример:
для линейной модели вида Y=A0+A1*X1+A2*X2, построенной по 20 экспериментальным точкам, получаем f1=2 (две переменных X1 и X2),   f2=20-2-1=17.
Для проверки значимости уравнения регрессии вычисленное значение критерия Фишера сравнивают с табличным, взятым для числа степеней свободы f1 (бóльшая дисперсия) и f2 (меньшая дисперсия) на выбранном уровне значимости (обычно 0.05). Если рассчитанный критерий Фишера выше, чем табличный, то объясненная дисперсия существенно больше, чем необъясненная, и модель является значимой.
Коэффициент корреляции и F-критерий, наряду с параметрами регрессионной модели, как правило, вычисляются в алгоритмах, реализующих метод наименьших квадратов.
Категория: Математика | Добавил: alexlat (28.06.2012)
Просмотров: 615 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]