Главная » Статьи » Математика » Методы Рунге — Кутты

Суть метода
Суть метода

 Разбор и рассмотрение методов, применяемых на практике для решения дифференциальных уравнений, мы начнем с их широкой категории, известной под общим названием методов Рунге-Кутта.

 Методы Рунге-Кутта обладают следующими свойствами:

1. Эти методы являются одноступенчатыми: чтобы найти уm+1, нужна информация о предыдущей точке xm,ym.

2. Они согласуются с рядом Тейлора вплоть до членов порядка hp, где степень р различна для различных методов и называется порядковым номером или порядком метода.

3. Они не требуют вычисления производных от f (x,y), а требуют вычисления самой функции.

Рассмотрим сначала геометрическое построение и выведем некоторые формулы на основе геометрических аналогий. После этого мы подтвердим полученные результаты аналитически.

 Предположим, нам известна точка xm,ym на искомой кривой. Тогда мы можем провести прямую линию с тангенсом угла наклона у¢m=f(xm,ym), которая пройдет через точку xm,ym. Это построение показано на рис.1, где кривая представляет собой точное, но конечно неизвестное решение уравнения, а прямая линия L1 построена так, как это только что описано.



Тогда следующей точкой решения можно считать ту, где прямая L1 пересечет ординату, проведенную через точку x=xm+1=xm+h.

Уравнение прямой L1 выглядит так: y=ym+y¢m(x-xm) так как y¢=f(xm,ym) и кроме того, xm+1=xm+h тогда уравнение примет вид

ym+1=ym+h*f(xm,ym)    1.1

 Ошибка при x=xm+1 показана в виде отрезка е. Очевидно, найденное таким образом приближенное значение согласуется с разложением в ряд Тейлора вплоть до членов порядка h, так что ошибка ограничения равна et=Кh2

 Заметим, что хотя точка на графике 1 была показана на кривой, в действительности ym является приближенным значением и не лежит точно на кривой.

Формула 1.1 описывает метод Эйлера, один из самых старых и широко известных методов численного интегрирования дифференциальных уравнений. Отметим, что метод Эйлера является одним из методов Рунге-Кутта первого порядка.

Рассмотрим исправленный метод Эйлера и модификационный метод Эйлера. В исправленном методе Эйлера мы находим средний тангенс угла наклона касательной для двух точек: xm,ym и xm+h,ym+hy¢m. Последняя точка есть та самая, которая в методе Эйлера обозначалась xm+1,ym+1. Геометрический процесс нахождения точки xm+1,ym+1 можно проследить по рис.2. С помощью метода Эйлера находится точка xm+h,ym+hy¢m, лежащая на прямой L1. В этой точке снова вычисляется тангенс, дает прямую L. Наконец, через точку xm,ym мы проводим прямую L, параллельную L. Точка, в которой прямая L пересечется с ординатой, восстановленной из x=xm+1=xm+h, и будет искомой точкой xm+1,ym+1.

Тангенс угла наклона прямой L и прямой L равен

Ф(xm,ym,h)=½[f(xm,ym)+f(xm+h,ym+y¢mh)]    1.2

 

гдеm=f(xm,ym)   1.3

 Уравнение линии L при этом записывается в виде

  y=ym+(x-xm)Ф(xm,ym,h),

 так что

   ym+1=ym+hФ(xm,ym,h).  1.4

 Соотношения 1.2, 1.3, 1.4 описывают исправленный метод Эйлера.



Чтобы выяснить, насколько хорошо этот метод согласуется с разложением в ряд Тейлора, вспомним, что разложение в ряд функции f(x,y) можно записать следующим образом:

 f(x,y)=f(xm,ym)+(x-xm)¶f/¶x+(y-ym)¶f/¶x+¼   1.5

где частные производные вычисляются при x=xm и y=ym.

 Подставляя в формулу 1.5 x=xm+h и y=ym+hy¢m и используя выражение 1.3 для y¢m, получаем

  f(xm+h,ym+hy¢m)=f+hfx+hffy+O(h2),

где снова функция f и ее производные вычисляются в точке xm,ym. Подставляя результат в 1.2 и производя необходимые преобразования, получаем

  Ф(xm,ym,h)=f+h/2(fx+ffy)+O(h2).

Подставим полученное выражение в 1.4 и сравним с рядом Тейлора

  ym+1=ym+hf+h2/2(fx+ffy)+O(h3).

 Как видим, исправленный метод Эйлера согласуется с разложением в ряд Тейлора вплоть до членов степени h2, являясь, таким образом, методом Рунге-Кутты второго порядка.

Рассмотрим модификационный метод Эйлера. Рассмотрим рис.3 где первоначальное построение сделано так же, как и на рис.2. Но на этот раз мы берем точку, лежащую на пересечении этой прямой и ординатой x=x+h/2. На рисунке эта точка образована через Р, а ее ордината равна y=ym+(h/2)y¢m. Вычислим тангенс угла наклона касательной в этой точке

  Ф(xm,ym,h)=f+(xm+h/2,ym+h/2*y¢m),      1.6

 где  y¢m=f(xm,ym)     1.7

 Прямая с таким наклоном, проходящая через Р, обозначена через L*. Вслед за тем, мы проводим через точку xm,ym прямую параллельную L*, и обозначаем ее через L0. Пересечение этой прямой с ординатой x=xm+h и даст искомую точку xm+1,ym+1. Уравнение прямой можно записать в виде y=ym+(x-xm)Ф(xm,ym,h),

где Ф задается формулой 1.6. Поэтому

ym+1=ym+hФ(xm,ym,h)      1.8

Соотношения 1.6, 1.7, 1.8 описывают так называемый модификационный метод Эйлера и является еще одним методом Рунге-Кутта второго порядка. Обобщим оба метода. Заметим, что оба метода описываются формулами вида

 ym+1=ym+hФ(xm,ym,h)    1.9

и в обоих случаях Ф имеет вид

Ф(xm,ym,h)=a1f(xm,ym)+a2f(xm+b1h,ym+b2hy¢m),     1.10

где m=f(xm,ym)    1.11

 В частности, для исправленного метода Эйлера

  a1=a2=1/2;

  b1=b2=1.



В то время как для модификационного метода Эйлера

  a1=0, a2=1,

  b1=b2=1/2.

Формулы 1.9, 1.10, 1.11 описывают некоторый метод типа Рунге-Кутты. Посмотрим, какого порядка метод можно рассчитывать получить в лучшем случае и каковы допустимые значения параметров a1, a2, b1 и b2 .

 Чтобы получить соответствие ряду Тейлора вплоть до членов степени h, в общем случае достаточно одного параметра. Чтобы получить согласование вплоть до членов степени h2, потребуется еще два параметра, так как необходимо учитывать члены h2fx и h2ffy. Так как у нас имеется всего четыре параметра, три из которых потребуются для создания согласования с рядом Тейлора вплоть до членов порядка h2, то самое лучшее, на что здесь можно рассчитывать - это метод второго порядка.

В разложении f(x,y) в ряд 1.5 в окрестности точки xm,ym положим x=xm+b1h,

   y=ym+b2hf.

Тогда f(xm+b1h,ym+b2hf)=f+b1hfx+b2hffy+O(h2), где функция и производные в правой части равенства вычислены в точке xm,ym.

Тогда 1.9 можно переписать в виде ym+1=ym+h[a1f+a2f+h(a2b1fx+a2b2ffy)]+O(h3).

Сравнив эту формулу с разложением в ряд Тейлора, можно переписать в виде

ym+1=ym+h[a1f+a2f+h(a2b1fx+a2b2ffy)]+O(h3).

Если потребовать совпадения членов hf, то a1+a2=1.

Сравнивая члены, содержащие h2fx, получаем a2b1=1/2.

Сравнивая члены, содержащие h2ffy, получаем a2b2=1/2.

Так как мы пришли к трем уравнениям для определения четырех неизвестных, то одно из этих неизвестных можно задать произвольно, исключая, может быть, нуль, в зависимости от того, какой параметр взять в качестве произвольного.

Положим, например, a2=w¹0. тогда a1=1-w, b1=b2=1/2w и соотношения 1.9, 1.10, 1.11 сведутся к

 ym+1=ym+h[(1-w)f(xm,ym)+wf(xm+h/2w,ym+h/2wf(xm,ym))]+O(h3)   1.12

Это наиболее общая форма записи метода Рунге-Кутта второго порядка. При w=1/2 мы получаем исправленный метод Эйлера, при w=1 получаем модификационный метод Эйлера. Для всех w, отличных от нуля, ошибка ограничения равна

et=kh3   1.13

Методы Рунге-Кутта третьего и четвертого порядков можно вывести совершенно аналогично тому, как это делалось при выводе методов первого и второго порядков. Мы не будем воспроизводить выкладки, а ограничимся тем, что приведем формулы, описывающие метод четвертого порядка, один из самых употребляемых методов интегрирования дифференциальных уравнений. Этот классический метод Рунге-Кутта описывается системой следующих пяти соотношений

 ym+1=ym+h/6(R1+2R2+2R3+R4)     1.14

где R1=f(xm,ym),    1.15

 R2=f(xm+h/2,ym+hR1/2),    1.16

 R3=f(xm+h/2,ym+hR2/2),     1.17

 R4=f(xm+h/2,ym+hR3/2).     1.18

Ошибка ограничения для этого метода равна et=kh5

так что формулы 1.14-1.18 описывают метод четвертого порядка. Заметим, что при использовании этого метода функцию необходимо вычислять четыре раза.

Категория: Методы Рунге — Кутты | Добавил: alexlat (25.04.2012)
Просмотров: 1780 | Комментарии: 1 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]