Главная » Статьи » Математика » Геометрия

Разбиения выпуклого многоугольника


Выпуклый многоугольник с n сторонами можно разбить на треугольники диагоналями,
которые пересекаются лишь в его вершинах. Вывести формулу для числа таких разбиений.

Определение: назовем правильным разбиением выпуклого n-угольника на треугольники
диагоналями, пересекающимися только в вершинах n-угольника.



Пусть P1,
P2 , … ,Pn
–вершины выпуклого n-угольника, Аn- число его правильных разбиений. Рассмотрим диагональ многоугольника PiPn.В каждом правильном разбиение P1Pn принадлежит какому-то треугольнику P1PiPn, где1<i<n. Следовательно, полагая i=2,3, … , n-1, мы получаем (n-2) группы правильных
разбиений, включающие все возможные случаи.

Пусть i=2 – одна группа правильных разбиений, которая всегда содержит диагональ P2Pn .Число разбиений, входящих в эту группу совпадает с числом правильных разбиений (n-1) угольника P2P3…Pn, то
есть равно Аn-1.

Пусть i=3 – одна  группа правильных разбиений, которая всегда содержит диагональ P3P1 и P3Pn.Следовательно, число правильных разбиений, входящих в эту группу, совпадает с числом
правильных разбиений (n-2)угольника P3P4…Pn, то есть равно Аn-2.

При i=4 среди треугольников разбиение непременно содержит треугольник P1P4Pn.К нему
примыкают четырехугольник P1P2P3P4 и (n-3)угольник P4P5 …Pn.Число правильных разбиений четырехугольника равно A4, число правильных разбиений (n-3) угольника равно

Аn-3.Следовательно, полное число правильных разбиений, содержащихся в этой группе, равно

Аn-3A4.Группы с i=4,5,6,… содержат Аn-4A5,
Аn-5A6,

правильных разбиений.

При i=n-2 число правильных разбиений в группе совпадает с числом правильных разбиений в группе с i=2,то есть равно Аn-1.

Поскольку А12=0, А3=1,  A4=2 и т.к. n ³ 3, то число правильных разбиений равно:

Аn= Аn-1n-2n-3 A4n-4 A5+ … + A 5Аn-4+ A4Аn-3+ Аn-2+ Аn-1.

Например:

A 5= A4+
А3+ A4=5


A6= A5+ А4+ А4+ A5=14

A7= A6+ А5+ А4 *А45+ A6 =42

A8= A7+ А65*А4+ А4*А56+ A7 =132


П.2.1. Найдем количество во всех диагоналей правильных разбиениях, которые пересекают внутри только одну диагональ.

Проверяя на частных случаях, пришли к предположению, что количество диагоналей в выпуклых n-угольниках
равно произведению количества разбиений на (n-3)

Докажем предположение, что P1n= Аn(n-3)



Каждый n-угольник можно разбить на (n-2) треугольника, из которых можно сложить (n-3) четырехугольника, причем каждый четырехугольник будет иметь диагональ. Но в четырехугольнике можно провести 2 диагонали, значит в (n-3) четырехугольниках можно провести (n-3) дополнительные диагонали. Значит, в
каждом правильном разбиении можно провести (n-3) диагонали удовлетворяющих условию задачи.

П.2.2. Найдем количество во всех диагоналей правильных всех разбиениях, которые пересекают внутри только две диагонали.

Проверяя на частных случаях, пришли к предположению, что количество диагоналей в выпуклых n-угольниках
равно произведению количества разбиений на (n-4), где n ≥ 5

Докажем предположение, что P2n=(n-4)А, где n ≥ 5.



n-угольник можно разбить на (n-2) треугольников из которых можно сложить
(n-4) пятиугольника, в котором будут содержаться две непересекающиеся диагонали. Значит, найдется третья диагональ, которая пересекает две другие. Так как имеется (n-4) пятиугольника, значит, существует (n-4) дополнительные диагонали удовлетворяющих условию задачи.

П.2.3. Разбиение n-угольника, в котором дополнительные диагонали пересекают главные k
раз.

Определение 1:Главными диагоналями выпуклого n-угольника называются диагонали, которые
разбивают его на треугольники, пересекаясь при этом только в вершинах n-угольника.

Замечание: их существует (n-3).

Определение 2:Дополнительными диагоналями выпуклого n-угольника называются диагонали,
которые в данном разбиении пересекают главные диагонали.

Замечание: их существует менее (n-3).

I.Определение k:



Будем выделять из выпуклого n-угольника

 

следующим образом: соединяем диагоналями через одну вершину данного n-угольника, причем
выделением считается получение последующего a-угольника из предыдущего, используя не менее двух диагоналей. Выделение ведется до тех пор, пока не получится четырехугольник или треугольник (r
= 4
или r = 3 (r – остаточный коэффициент)). Назовем каждое такое выделение циклом и введем величину, которая будет "считать” их (d). Для каждого d существует 2d+1 многоугольников, первый
многоугольник для данного d ,будет (2d+1+1)-угольником. Для первой половины (для данного d) многоугольников r = 3, для второй - r = 4. Последним многоугольником, для которого r = 3 будет (3×2d )-угольником. Окончательно получаем: r = 3, если nÎ[2d+1+1; 3×2d],
в противном случае r = 4. За каждый цикл, если проводить дополнительные диагонали, будет добавляться по 2 пересечения и через d циклов число пересечений достигнет максимума в полученном данным способом разбиении. Обозначим это число буквой k.

Итак, за 1 цикл 2 пересечения, за 2 цикла – 4, за 3 – 6, очевидна арифметическая прогрессия с разностью 2, a1=2 и количество членов равным d; значит k=2+2(d-1)=2d – только в том случае, если конечной фигурой окажется треугольник. В противном случае k=2d+1, так как четырехугольник имеет собственную диагональ.

Рассчитаем d: т.к.: d=1, n Є [22+1; 23]

d=2, nЄ [23+1; 24

d=3, nЄ [24+1; 25

Зависимость d от n- логарифмическая по основанию 2; становится очевидным
равенство: d=[log2(n-1)]-1. Выразим k через n:

k=2([log2 (n-1)]-1), если nÎ[2[log2(n-1)]+1;
3×2[log2(n-1)]-1]

или

k=2([log2(n-1)]-1)+1= 2[log2 (n-1)]-1, если nÏ[2[log2(n-1)]+1;
3×2[log2(n-1)]-1]

Так как k – максимум пересечений, то уместны неравенства:

k≤2([log2 (n-1)]-1), если nÎ[2[log2(n-1)]+1;
3
×2[log2(n-1)]-1]

или (*)

k≤2[log2 (n-1)]-1, если nÏ[2[log2(n-1)]+1;
3
×2[log2(n-1)]-1]

II. Найдем число дополнительных диагоналей (m), которые
пересекают главные не более
k раз.



Выделим в данном выпуклом n-угольнике (k+3)-угольник (k+3)-угольник
(если это возможно), зн. уже ‘использовано’ (n+3)-2=k+1 всех

отбросили существующих треугольников 1 треугольник n-угольника 

(всего их (n-2)),потом добавили другой ‘отбросим’ крайний треугольник и реугольник и ‘добавим’ к получившейся фигуре еще опять получили один, имеющий общую с ней сторону, (k+3)-угольник
‘не использованный’ треугольник, тогда останется (k+2) не использованных треугольника, и так далее до тех пор, пока не ‘используем’ все (n-2)треугольника. Очевидна арифметическая
прогрессия с разностью 1, am=n-2 и c количеством членов равным m. Получим:n-2=k+1+(m-1)<=>n-2=k+m<=>m=n-k-2óm=n-(k+2)Значит, в n-угольник можно вписать (k+3)угольник
(n-(k+2))раз, то есть существуют такие (n-(k+2)) дополнительные диагонали, которые пересекут k главных
диагоналей.

Окончательно получаем: Pkn=(n- (k+2))Аn , где (*).

Категория: Геометрия | Добавил: alexlat (25.04.2012)
Просмотров: 3276 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]