Главная » Статьи » Математика » Интегралы |
Двойной интеграл в полярных координатах Пусть в двойном интеграле (1) при обычных предположениях мы желаем перейти к полярным координатам r и f, полагая x = r cos j, y = r sin j. (2) Область интегрирования S разобьем на элементарные ячейки DSi с помощью координатных линий r = ri (окружности) и j = ji (лучи) (рис.1).. Введем обозначения: Drj = rj+1 - rj, Dji = ji+1 - ji Так как окружность перпендикулярна (ортогональна) радиусам, то внутренние ячейки DSi с точностью до бесконечно малых высшего порядка малости относительно их площади можно рассматривать как прямоугольники с измерениями rjDji и Drj; поэтому площадь каждой такой ячейки будет равна: DSi = rj Dji Drj (3) Что касается ячеек DSij неправильной формы, примыкающих к границе Г области интегрирования S, то эти ячейки не повлияют на значение двойного интеграла и мы их будем игнорировать. В качестве точки Mij $ Sij для простоты выберем вершину ячейки DSij с полярными координатами rj и ji. Тогда декартовые координаты точки Mij равны: xij = rj cos ji, yij = rj sin ji. И следовательно, f(xij,yij) = f(rj cos ji, rj sin ji) (3') Двойной интеграл (1) представляет собой предел двумерной интегральной суммы, причем можно показать, что на значение этого предела не влияют добавки к слагаемым интегральной суммы, являющиеся бесконечно малыми высшего порядка малости, поэтому учитывая формулы (3) и (3'), получаем: (4) где d - максимальный диаметр ячеек DSij и сумма распространена на все ячейки указанного выше вида, целиком содержащиеся в области S. С другой стороны, величины ji и rj суть числа и их можно рассматривать как прямоугольные декартовые координаты некоторых точек плоскости Ojr. Таким образом, сумма (4) является интегральной суммой для функции f(r cosj, r sinj)r, соответствующая прямоугольной сетке с линейными элементами Dji и Dri. Следовательно (5) Сравнивая формулы (4) и (5), получим окончательно(6) Выражение dS = r dj dr называется двумерным элементом площади в полярных координатах. Итак, чтобы в двойном интеграле (1) перейти к полярным координатам, достаточно координаты x и y заменить по формулам (2), а вместо элемента площади dS подставить выражение (7) . Для вычисления двойного интеграла (6) его нужно заменить повторным. Пусть область интегрирования S определяется неравенствамиГде r1(j), r1(j) - однозначные непрерывные функции на отрезке [a,b]. (рис 2). Имеем Где F(r,j) = rf(r cosj, r sinj) Пример 1. Переходя к полярным координатам j и r, вычислить двойной интеграл Где S - первая четверть круга радиуса R=1, с центром в точке О(0,0) (рис 3). Так как то применяя формулу (6), получим Область S определена Неравенствами Поэтому на основании формулы (8) имеем Пример 2. В интеграле(9) перейти к полярным координатам. Область интегрирования здесь есть треугольник S, ограниченный прямыми y=0, y=x, x=1 (рис 4). В полярных координатах уравнения этих прямых записываются следующим образом: j=0, j=p/4, r cosj=1 и, следовательно, область S определяется неравенствами Отсюда на основании формул (6) и(8), учитывая, что | |
Просмотров: 1342 | |
Всего комментариев: 0 | |
Пифагор Самосский [3] |
Математика [45] |
Алгебра Дж. Буля [1] |
Алгебра [10] |
Геометрия [27] |
Теория вероятности [11] |
Теория Графов [11] |
Численные методы оптимизации [4] |
Дзета-функция Римана [1] |
Математическая интуиция [3] |
Методы Рунге — Кутты [7] |
Уравнения [17] |
Векторы [5] |
Математические игры [12] |
Алгоритмы [3] |
Нестандартный анализ [9] |
Вейвлеты [3] |
Анализ [8] |
Графики [1] |
Интегралы [3] |
Задача Лагранжа [11] |
Геометрия в пространстве [3] |
Магический Квадрат [10] |