Главная » Статьи » Математика » Магический Квадрат |
МАГИЧЕСКИЙ КВАДРАТ ДЮРЕРА Магический квадрат, воспроизведённый немецким художником Альбрехтом Дюрером на гравюре "Меланхолия”, известен всем исследователям магических квадратов. Здесь подробно рассказывается об этом квадрате. Сначала покажу гравюру "Меланхолия” (рис. 1) и магический квадрат, который изображён на ней (рис. 2).
Рис. 1
Рис. 2 Теперь покажу этот квадрат в привычном виде (рис. 3):
Рис. 3 Интересно, что два средних числа в последней строке квадрата (они выделены) составляют год создания гравюры – 1514. Считают, что этот квадрат, так очаровавший Альбрехта Дюрера, пришёл в Западную Европу из Индии в начале XVI века. В Индии этот квадрат был известен в I веке нашей эры. Предполагают, что магические квадраты были придуманы китайцами, так как самое раннее упоминание о них встречается в китайской рукописи, написанной за 4000-5000 лет до нашей эры. Вот какой древний возраст у магических квадратов! Рассмотрим теперь все свойства этого удивительного квадрата. Но делать это мы будем на другом квадрате, в группу которого входит квадрат Дюрера. Это означает, что квадрат Дюрера получается из того квадрата, который мы будем сейчас рассматривать, одним из семи основных преобразований магических квадратов, а именно поворотом на 180 градусов. Все 8 квадратов, образующих данную группу, обладают свойствами, которые будут сейчас перечислены, только в свойстве 8 для некоторых квадратов слово "строка” заменится на слово "столбец” и наоборот. Основной квадрат данной группы вы видите на рис. 4.
Рис. 4 Теперь перечислим все свойства этого знаменитого квадрата. Свойство 1. Этот квадрат ассоциативен, то есть любая пара чисел, симметрично расположенных относительно центра квадрата, даёт в сумме 17=1+n2. Свойство 2. Сумма чисел, расположенных в угловых ячейках квадрата, равна магической константе квадрата – 34. Свойство 3. Сумма чисел в каждом угловом квадрате 2х2, а также в центральном квадрате 2х2 равна магической константе квадрата. Свойство 4. Магической константе квадрата равна сумма чисел на противоположных сторонах двух центральных прямоугольников 2х4, а именно: 14+15+2+3=34, 12+8+9+5=34. Свойство 5. Магической константе квадрата равна сумма чисел в ячейках, отмечаемых ходом шахматного коня, а именно: 1+6+16+11=34, 14+9+3+8, 15+5+2+12=34 и 4+10+13+7=34. Свойство 6. Магической константе квадрата равна сумма чисел в соответствующих диагоналях угловых квадратов 2х2, примыкающих к противоположным вершинам квадрата. Например, в угловых квадратах 2х2, которые выделены на рис. 4, сумма чисел в первой паре соответствующих диагоналей: 1+7+10+16=34 (это и понятно, так как эти числа расположены на главной диагонали самого квадрата). Сумма чисел в другой паре соответствующих диагоналей: 14+12+5+3=34. Свойство 7 .Магической константе квадрата равна сумма чисел в ячейках, отмечаемых ходом, подобным ходу шахматного коня, но с удлинённой буквой Г. Показываю эти числа: 1+9+8+16=34, 4+12+5+13=34, 1+2+15+16=34, 4+3+14+13=34. Свойство 8. В каждой строке квадрата есть пара рядом стоящих чисел, сумма которых равна 15, и ещё пара тоже радом стоящих чисел, сумма которых равна 19. В каждом столбце квадрата есть пара рядом стоящих чисел, сумма которых равна 13, и ещё пара тоже рядом стоящих чисел, сумма которых равна 21. Свойство 9. Суммы квадратов чисел в двух крайних строках равны между собой. То же можно сказать о суммах квадратов чисел в двух средних строках. Смотрите: 12 + 142 + 152 + 42 = 132 + 22 + 32 + 162 = 438 122 + 72 + 62 + 92 = 82 + 112 + 102 + 52 = 310 Аналогичным свойством обладают числа в столбцах квадрата. Свойство 10. Если в рассматриваемый квадрат вписать квадрат с вершинами в серединах сторон (рис. 5), то: а) сумма чисел, расположенных вдоль одной пары противоположных сторон вписанного квадрата, равна сумме чисел, расположенных вдоль другой пары противоположных сторон, и каждая из этих сумм равна магической константе квадрата; б) равны между собой суммы квадратов и суммы кубов указанных чисел: 122 + 142 + 32 + 52 = 152 + 92 + 82 + 22 = 374 123 + 143 + 33 + 53 = 153 + 93 + 83 + 23 = 4624
Рис. 5 Вот такими свойствами обладает магический квадрат с рис. 4.
Следует отметить, что в ассоциативном квадрате, каковым является рассматриваемый квадрат, можно выполнять ещё такие преобразования, как перестановка симметричных строк и/или столбцов. Например, на рис. 6 изображён квадрат, полученный из квадрата с рис. 4 перестановкой двух средних столбцов.
Рис. 6 В полученных такими преобразованиями новых ассоциативных квадратах выполняются не все перечисленные выше свойства, но многие свойства имеют место. Читателям предлагается проверить выполнение свойств в квадрате с рис. 6. | |||||||||||||||||||||||||||||||||||||||||||||||||
Просмотров: 2689 | |
Всего комментариев: 0 | |
Пифагор Самосский [3] |
Математика [45] |
Алгебра Дж. Буля [1] |
Алгебра [10] |
Геометрия [27] |
Теория вероятности [11] |
Теория Графов [11] |
Численные методы оптимизации [4] |
Дзета-функция Римана [1] |
Математическая интуиция [3] |
Методы Рунге — Кутты [7] |
Уравнения [17] |
Векторы [5] |
Математические игры [12] |
Алгоритмы [3] |
Нестандартный анализ [9] |
Вейвлеты [3] |
Анализ [8] |
Графики [1] |
Интегралы [3] |
Задача Лагранжа [11] |
Геометрия в пространстве [3] |
Магический Квадрат [10] |