Главная » Статьи » Математика » Нестандартный анализ |
Следствия основной гипотезыПриведем несколько примеров, показывающих, какие следствия можно вывести из сформулированной Основной гипотезы. Оказывается, что несмотря на то, что сформулированное нами требование одновременной разрешимости систем уравнений и неравенств кажется весьма частным, оно имеет самые разнообразные следствия и достаточно для обоснований значительной части рассуждений с ги-пердействительными числами. Пример 1. Пусть f – функция одного действительного аргумента, принимающая только значения 0 и 1. Докажем, что функция *f принимает только значения 0 и 1. Для этого рассмотрим систему f(x)¹0, f(x)¹1, которая по предположению не имеет действительных решений. Следовательно, не имеет (гипердействительных) решений и ее аналог — система *f(x)¹0, *f(x)¹1, Пример 2. Пусть f и g – функции одного действительного аргумента, причем множества их нулей совпадают. (Множество нулей функции – множество тех зна-чений аргумента, при которых значение функции равно 0) В этом случае и множества гипердействительных чисел, являющиеся множествами нулей функций *f и *g, совпадают. Докажем это. В самом деле, каждая из систем (1) f(x)=0, g(x)¹0, (2) g(x)=0, f(x)¹0, не имеет действительных решений. Следовательно, не имеют гииердействительных решений и их аналоги. Потому любой гипердействительный нуль функции *f обя-зан (чтобы не быть решением аналога системы (1)) быть нулем и для *g и наоборот. Этот пример позволяет определить гипердействительные аналоги не только для функций, но и для множеств. Пусть А – произвольное множество действительных чисел. Рассмотрим произвольную функцию f, для которой А – множество нулей. (Такая есть: достаточно положить, например, f(x)=0 при хÎА и f(x)=1 при xÏA). Рассмотрим теперь гипердействительный аналог *f функции f и множество *А его (гипердействительных) нулей. Как мы видим, множество *А не зависит от выбора функции f. Его мы и назовем гипердействительным аналогом множества А. Пример 3. Мы можем теперь разрешить включать системы наряду с равенствами t=s и неравенствами t¹s и записи вида sÎA, где s представляет собой терм, а А – множество действительных чисел. При этом решениями будут такие наборы (действительных или гипердействительных) значений переменных, при которых выполнены все равенства и неравенства, а значение s принадлежит множеству А. Гипердействительным аналогом sÎA будет *sÎ*A, где *s – гипердей-ствительный аналог терма s, а *A — аналог множества А (в указанном смысле). Таким образом, у всякой системы равенств, неравенств и включений (т. е. записей вида sÎA) появляется гипердействительный аналог. Для таких систем остается в силе свойство одновременной разрешимости: если гипердействительный аналог системы имеет (гипердействительные) решения, то исходная система имеет (действительные) решения. Чтобы увидеть это, достаточно заменить sÎA на a(s)=0, где a – функция с действительными аргументами и значениями, множеством нулей которой является A. Аналогичным образом можно добавлять в систему и утверждения вида sÏA (что заменяется на a(s)¹0). Пример 4. Пусть А – пустое множество. Докажем, что *A – пустое множество. В самом деле, система хÎА не имеет действительных решений, поэтому и система хÎ*А не имеет (гипердействительных) решений. Рассмотрев систему хÏА, получаем аналогичным образом, что если А содержит все действительные числа, то *А содержит все гипердействительные числа. Таким образом, гипердействительным аналогом множества R будет множество *R, так что наши обозначения согласованы. Вдальнейшем, вместо того чтобы говорить о системе S и ее действительных решениях, а также о системе *S и ее гипердействительных решениях, будем говорить о действительных и гипердействительных решениях системы S (говоря о гипердойствительных решениях системы S, мы на самом деле будем иметь в виду гипердействительные решения системы *S). Пример 5. Если A=BÇC, то *A=*BÇ*C. В самом деле, каждая из систем хÎB, хÎС, хÏА; хÎA, хÏB; хÎA, хÏС. не имеет действительных, и, следовательно, гипердействительных решений. (Точнее, следовало бы говорить об аналогах этих систем) Отсюда получаем, что *В Ç*С Ì *A (первая система), *АÌ*С (вторая) и *AÌ*C (третья), откуда вытекает, что *AÌ*BÇ*C. Наши требования к системе гипердействительных чисел состояли из двух частей. Во-первых, *R должно быть упорядоченным неархимедовым полем, расширяющим R. Во-вторых, должны существовать аналоги для всех действительных функций, удовлетворяющие требованию одновременной разрешимости систем уравнений. Эти требования оказываются избыточными: тот факт, что гипердействительные аналоги сложения, умножения и т. п. превращают *R в поле, можно вывести из требования одновременной разрешимости систем уравнений. | |
Просмотров: 606 | |
Всего комментариев: 0 | |
Пифагор Самосский [3] |
Математика [45] |
Алгебра Дж. Буля [1] |
Алгебра [10] |
Геометрия [27] |
Теория вероятности [11] |
Теория Графов [11] |
Численные методы оптимизации [4] |
Дзета-функция Римана [1] |
Математическая интуиция [3] |
Методы Рунге — Кутты [7] |
Уравнения [17] |
Векторы [5] |
Математические игры [12] |
Алгоритмы [3] |
Нестандартный анализ [9] |
Вейвлеты [3] |
Анализ [8] |
Графики [1] |
Интегралы [3] |
Задача Лагранжа [11] |
Геометрия в пространстве [3] |
Магический Квадрат [10] |