Главная » Статьи » Математика » Уравнения |
Уравнения высоких степеней Разрешимость в радикалах Формула корней квадратного уравнения известна с незапамятных времен, а в XVI в. итальянские алгебраисты решили в радикалах уравнения третьей и четвертой степеней. Таким образом, было установлено, что корни любого уравнения не выше четвертой степени выражаются через коэффициенты уравнения формулой, в которой используются только четыре арифметические операции (сложение, вычитание, умножение, деление) и извлечение корней степени, не превышающей степень уравнения. Более того, все уравнения данной степени n (n ≤4 )можно "обслужить" одной общей формулой. При подстановке в нее коэффициентов уравнения получим все корни – и действительные, и комплексные. После этого естественно возник вопрос: а есть ли похожие общие формулы для решения уравнений пятой степени и выше? Ответ на него смог найти норвежский математик Нильс Хенрик Абель в начале XIX в. Чуть раньше этот результат был указан, но недостаточно обоснован итальянцем Паоло Руффини. Теорема Абеля-Руффини звучит так: Общее уравнение степени n при n ≥ 5 неразрешимо в радикалах. Таким образом, общей формулы, применимой ко всем уравнениям данной степени n ≥ 5, не существует. Однако это не значит, что невозможно решить в радикалах те или иные частные виды уравнений высоких степеней. Сам Абель нашел такое решение для широкого класса уравнений произвольно высокой степени – так называемых абелевых уравнений. Теорема Абеля-Руффини не исключает даже и того, что корни каждого конкретного алгебраического уравнения можно записать через его коэффициенты с помощью знаков арифметических операций и радикалов, в частности, что любое алгебраическое число, т.е. корень уравнения вида anxn + an-1xn-1 +...+a1x + a0 = 0,an ≠ 0 с целыми коэффициентами, можно выразить в радикалах через рациональные числа. На самом деле такое выражение существует далеко не всегда. Это следует из теоремы разрешимости алгебраических уравнений, построенной выдающимся французским математиком Эваристом Галуа в его "Мемуаре об условиях разрешимости уравнений в радикалах" (1832 г.; опубликован в 1846 г.). Подчеркнем, что в прикладных задачах нас интересует только приближенные значения корней уравнения. Поэтому его разрешимость в радикалах здесь обычно роли не играет. Имеются специальные вычислительные методы, позволяющие найти корни любого уравнения с любой наперед заданной точностью, ничуть не меньшей, чем дают вычисления по готовым формулам. | |
Просмотров: 1425 | |
Всего комментариев: 0 | |
Пифагор Самосский [3] |
Математика [45] |
Алгебра Дж. Буля [1] |
Алгебра [10] |
Геометрия [27] |
Теория вероятности [11] |
Теория Графов [11] |
Численные методы оптимизации [4] |
Дзета-функция Римана [1] |
Математическая интуиция [3] |
Методы Рунге — Кутты [7] |
Уравнения [17] |
Векторы [5] |
Математические игры [12] |
Алгоритмы [3] |
Нестандартный анализ [9] |
Вейвлеты [3] |
Анализ [8] |
Графики [1] |
Интегралы [3] |
Задача Лагранжа [11] |
Геометрия в пространстве [3] |
Магический Квадрат [10] |