Главная » Файлы » Математика » Нестандартные задачи по Математике

Локаторы дальней космической связи
25.10.2013, 23:20
Локаторы дальней космической связи замечают летящий в плоскости орбиты земли неизвестный астероид с координатами (x, y). Астероид летит с постоянной скоростью, векторное значение которой равно (Vx, Vy). С земли из точки с координатами (0, 0) немедленно стартует ракета с радиусом действия R (R > 0). Ракета летит по прямой с постоянной скоростью в пределах от 0 до W.
Требуется определить, может ли ракета подлететь вплотную к астероиду в пределах радиуса ее действия и найти вектор скорости ракеты, при котором время встречи ракеты с астероидом минимальное.
Результат решения задачи должен быть вычислен с погрешностью не более 0.01. Влиянием земли и всех космических объектов пренебречь. Ракета и астероид двигаются в одной плоскости.
В начале входного файла содержится число N — количество наборов исходных данных (тестов). Далее расположены N наборов исходных данных; каждый набор — шесть вещественных чисел: X, Y, Vx, Vy, W, R. Все числа в исходном файле разделяются пробелами и (или) символами перевода строки.
Для каждого набора исходных данных вывести с новой строки вектор скорости (Ux, Uy) и минимальное время до встречи, либо сообщение "Встреча невозможна”.
Пример файла исходных данных     Пример выходного файла
 

Решение.
 Для решения этой задачи прежде всего необходимо уметь определять взаимное расположение прямой, вдоль которой движется астероид, и окружности с центром на Земле и радиусом R. Если они не пересекаются, то встреча невозможна, в противном случае требуется отыскать точки их пересечения. Затем для поиска точки встречи с минимальным временем можно опять же применить дихотомию.
Категория: Нестандартные задачи по Математике | Добавил: alexlat
Просмотров: 345 | Загрузок: 0 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]