Главная » Файлы » Математика » Нестандартные задачи по Математике |
Три кузнечика играют в чехарду
27.10.2013, 19:40 | |
Три кузнечика играют в чехарду : если кузнечик из точки А прыгает через кузнечика , находящегося в точке В , то он окажется в точке С , симметричной точке А относительно точки В. В исходном положении кузнечики занимают три вершины квадрата. Могут ли они ,играя в чехарду, попасть в четвертую его вершину? Решение: Введем на плоскости систему координат так, чтобы три вершины квадрата, в которых находятся кузнечики, имели координаты (0; 0),(0; 1) и (1; 0). При указанных прыжках каждая из координат кузнечиков или остается неизменной, или изменяется в ту или иную сторону на четное число х Так как в начальном положении по меньшей мере одна из координат каждой из трех точек четна , то она при прыжках останется четной: четность хотя бы одной из двух каждой из точек есть инвариант. Поэтому попасть в М один из кузнечиков не может Ответ: не может.
| |
Просмотров: 1207 | Загрузок: 0 | |
Всего комментариев: 0 | |
Категории раздела
Математика [249] |
Алгебра [136] |
Геометрия [416] |
Тригонометрия [109] |
Задачи по теории вероятности [60] |
Нестандартные задачи по Математике [232] |
Задачи по комбинаторике [168] |
Элементы математического анализа [51] |
Смеси,Растворы , Сплавы.Проценты , Прогрессии ,Пропорции,Движение и работа [133] |
Решение уравнений [190] |
Функция и Графики [110] |
Задачи на доказательство [151] |
Задачи с параметрами [140] |
Kоординаты и векторы [7] |
Решение неравенств [229] |
Разные решения одной задачи_ Одно решение разных задач [56] |
Контрольные задачи по темам [12] |
Формулы ,Таблицы, Правила, Теоремы [151] |
Тесты [72] |
Программирование [27] |
Высшая Математика [77] |
Теория графов [47] |
Контрольные и самостоятельные работы пр Геометрии [344] |
Друзья сайта