Главная » Файлы » Математика » Нестандартные задачи по Математике |
В футбольном турнире в один круг участвуют
26.10.2013, 23:20 | |
В футбольном турнире в один круг участвуют 15 команд. Докажите, что в любой момент турнира найдется команда, которая сыграла к этому моменту четное число матчей (может быть, ни одного ) Решение: Обозначим число матчей, проведенных первой, второй, третьей и т. д. командами, через а1, а2, а3,…, а15. Допустим, что все эти 15 чисел нечетны. Подсчитаем общее число матчей, проведенных командами. Оно равно ( а1 + а2 +…+ а15)/2. Но числитель дроби есть число нечетное, как сумма нечетного числа нечетных слагаемых. Тогда общее число матчей есть число дробное. Получили противоречие. Утверждение задачи есть частный случай одной из теорем теории графов. | |
Просмотров: 1307 | Загрузок: 0 | |
Всего комментариев: 0 | |
Категории раздела
Математика [249] |
Алгебра [136] |
Геометрия [416] |
Тригонометрия [109] |
Задачи по теории вероятности [60] |
Нестандартные задачи по Математике [232] |
Задачи по комбинаторике [168] |
Элементы математического анализа [51] |
Смеси,Растворы , Сплавы.Проценты , Прогрессии ,Пропорции,Движение и работа [133] |
Решение уравнений [190] |
Функция и Графики [110] |
Задачи на доказательство [151] |
Задачи с параметрами [140] |
Kоординаты и векторы [7] |
Решение неравенств [229] |
Разные решения одной задачи_ Одно решение разных задач [56] |
Контрольные задачи по темам [12] |
Формулы ,Таблицы, Правила, Теоремы [151] |
Тесты [72] |
Программирование [27] |
Высшая Математика [77] |
Теория графов [47] |
Контрольные и самостоятельные работы пр Геометрии [344] |
Друзья сайта