Главная » Файлы » Математика » Нестандартные задачи по Математике |
В пятиэтажном доме с четырьмя подъездами
26.10.2013, 23:13 | |
В пятиэтажном доме с четырьмя подъездами подсчитали число жителей на каждом этаже и, кроме того, в каждом подъезде. Могут ли все полученные 9 чисел быть нечетными? Решение: Обозначим число жителей на этажах соответственно через а1, а2, а3, а4, а5, а число жителей в подъездах – соответственно через b1, b2, b3, b4. Тогда общее число жителей дома можно подсчитать двумя способами – по этажам и по подъездам: a1 + а2 + а3 + а4 + а5 = b1 + b2 + b3 + b4. Если бы все эти 9 чисел были нечетными, то сумма в левой части записанного равенства была бы нечетной, а сумма в правой части – четной. Следовательно, это невозможно. Ответ: не могут.
| |
Просмотров: 693 | Загрузок: 0 | |
Всего комментариев: 0 | |
Категории раздела
Математика [249] |
Алгебра [136] |
Геометрия [416] |
Тригонометрия [109] |
Задачи по теории вероятности [60] |
Нестандартные задачи по Математике [232] |
Задачи по комбинаторике [168] |
Элементы математического анализа [51] |
Смеси,Растворы , Сплавы.Проценты , Прогрессии ,Пропорции,Движение и работа [133] |
Решение уравнений [190] |
Функция и Графики [110] |
Задачи на доказательство [151] |
Задачи с параметрами [140] |
Kоординаты и векторы [7] |
Решение неравенств [229] |
Разные решения одной задачи_ Одно решение разных задач [56] |
Контрольные задачи по темам [12] |
Формулы ,Таблицы, Правила, Теоремы [151] |
Тесты [72] |
Программирование [27] |
Высшая Математика [77] |
Теория графов [47] |
Контрольные и самостоятельные работы пр Геометрии [344] |
Друзья сайта