Главная » Файлы » Математика » Нестандартные задачи по Математике

Во время летнего пикника четыре супружеские пары
26.10.2013, 23:31
Во время летнего пикника четыре супружеские пары выпили 32 бутылки лимонада. Жены выпили: Жанна – 1 бутылку, Жаклин  2 бутылки, Колетта 3 бутылки и Анетта – 4 бутылки. Мужья не уступили женам: месье Пон выпил столько же, сколько его жена, месье Дюбуа – вдвое больше своей жены, месье Пейзан – втрое и месье Фонтен – вчетверо больше своих жен.
Как зовут мадам Пон, Дюбуа, Пейзан и Фонтен?

 Ответ
 
Пусть х, у, z и – число бутылок лимонада, которое выпили соответственно жены месье Попа, Дюбуа, Пейзана и Фонтена. Всего жены выпили
х + у + z + u = 10
бутылок лимонада. Их мужья выпили
х + 2у + 3z + 4u
бутылок лимонада, а четыре супружеские пары вместе опустошили
2х +3 у + 4z + 5u = 32
бутылки лимонада. Подставляя
u = 10 - х - у - z, получаем
18 = 3х+2 у + z .
Числа х и z должны быть либо оба четными, либо оба нечетными. Значения х=1 и х=2 отпадают, так как каждое из чисел у и z не превосходит 4. При х=4 мы получили бы z = 2 и у = 2, что невозможно, так как х, у, z и u – различные числа. Следовательно, задача допускает единственное решение:
х = 3, z = 1, у = 4, u = 2;
х = 3 (Колетта Пон), у = 4 (Анетта Дюбуа), z = 1 (Жанна Пейзан), u = 2 (Жаклин Фонтен).
Категория: Нестандартные задачи по Математике | Добавил: alexlat
Просмотров: 420 | Загрузок: 0 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]