| Главная » Файлы » Математика » Решение неравенств |
√ 4 - x² > √x + 5
| 25.10.2013, 02:10 | |
| √ 4 - x² > √x + 5 Решить неравенство
√ 4 - x² > √x+5 4 - x² > x + 5; { x + 5 ≥ 0; x² + x + 1 < 0; { x≥ - 5; Квадратный трехчлен x² + x + 1 имеет положительный старший коэффициент и отрицательный дискриминант, следовательно, он принимает только положительные значение, а это значит, что неравенство x² + x + 1 < 0; решений не имеет. Решение системы есть пустое множество. Ответ: x є Ө | |
| Просмотров: 441 | Загрузок: 0 | | |
| Всего комментариев: 0 | |
Категории раздела
| Математика [249] |
| Алгебра [136] |
| Геометрия [416] |
| Тригонометрия [109] |
| Задачи по теории вероятности [60] |
| Нестандартные задачи по Математике [232] |
| Задачи по комбинаторике [168] |
| Элементы математического анализа [51] |
| Смеси,Растворы , Сплавы.Проценты , Прогрессии ,Пропорции,Движение и работа [133] |
| Решение уравнений [190] |
| Функция и Графики [110] |
| Задачи на доказательство [151] |
| Задачи с параметрами [140] |
| Kоординаты и векторы [7] |
| Решение неравенств [229] |
| Разные решения одной задачи_ Одно решение разных задач [56] |
| Контрольные задачи по темам [12] |
| Формулы ,Таблицы, Правила, Теоремы [151] |
| Тесты [72] |
| Программирование [27] |
| Высшая Математика [77] |
| Теория графов [47] |
| Контрольные и самостоятельные работы пр Геометрии [344] |
Друзья сайта