| Главная » Файлы » Математика » Математика |
N = anan−1 . . . a1a0, ri
| 31.10.2013, 17:41 | |
Признак делимости Паскаля. Пусть запись числа N в десятичной системе счисления имеет вид N = anan−1 . . . a1a0, ri —остаток от деления числа 10i на m (i = 0, . . . , n). Докажите, что число N делится на m тогда и только тогда, когда число M = anrn + an−1 + . . .. . . + a1r1 + a0 делится на m.
| |
| Просмотров: 428 | Загрузок: 0 | | |
| Всего комментариев: 0 | |
Категории раздела
| Математика [249] |
| Алгебра [136] |
| Геометрия [416] |
| Тригонометрия [109] |
| Задачи по теории вероятности [60] |
| Нестандартные задачи по Математике [232] |
| Задачи по комбинаторике [168] |
| Элементы математического анализа [51] |
| Смеси,Растворы , Сплавы.Проценты , Прогрессии ,Пропорции,Движение и работа [133] |
| Решение уравнений [190] |
| Функция и Графики [110] |
| Задачи на доказательство [151] |
| Задачи с параметрами [140] |
| Kоординаты и векторы [7] |
| Решение неравенств [229] |
| Разные решения одной задачи_ Одно решение разных задач [56] |
| Контрольные задачи по темам [12] |
| Формулы ,Таблицы, Правила, Теоремы [151] |
| Тесты [72] |
| Программирование [27] |
| Высшая Математика [77] |
| Теория графов [47] |
| Контрольные и самостоятельные работы пр Геометрии [344] |
Друзья сайта