| Главная » Файлы » Математика » Математика |
Пусть S = {4 k + 1 | k ∈ Z } -
| 30.10.2013, 22:24 | |
| Пусть S = {4 k + 1 | k ∈ Z } - множество вот таких вот целых чисел. Легко проверить, что S замкнуто относительно умножения: (4 k 1 + 1)·(4 k 2 + 1) = 16 k 1 k 2 + 4 k 2 + 4 k 1 + 1 = 4·(4 k 1 k 2 + k 1 + k 2 ) + 1 ∈ S , однако это множество не замкнуто относительно сложения. "Квазипростые" числа из S - суть далее неразложимые в произведение чисел из S : 5, 9, 13, 17, 21, 49,... Индуктивным рассуждением, подобным рассуждению в первой части доказательства основной теоремы арифметики, легко убедиться, что всякое число из S разложимо в произведение "квазипростых". Однако единственность такого разложения отсутствует: 441 = 21·21 = 9·49, при этом 9 не делит 21, и 49 не делит 21. | |
| Просмотров: 310 | Загрузок: 0 | | |
| Всего комментариев: 0 | |
Категории раздела
| Математика [249] |
| Алгебра [136] |
| Геометрия [416] |
| Тригонометрия [109] |
| Задачи по теории вероятности [60] |
| Нестандартные задачи по Математике [232] |
| Задачи по комбинаторике [168] |
| Элементы математического анализа [51] |
| Смеси,Растворы , Сплавы.Проценты , Прогрессии ,Пропорции,Движение и работа [133] |
| Решение уравнений [190] |
| Функция и Графики [110] |
| Задачи на доказательство [151] |
| Задачи с параметрами [140] |
| Kоординаты и векторы [7] |
| Решение неравенств [229] |
| Разные решения одной задачи_ Одно решение разных задач [56] |
| Контрольные задачи по темам [12] |
| Формулы ,Таблицы, Правила, Теоремы [151] |
| Тесты [72] |
| Программирование [27] |
| Высшая Математика [77] |
| Теория графов [47] |
| Контрольные и самостоятельные работы пр Геометрии [344] |
Друзья сайта