| Главная » Файлы » Математика » Математика |
θ ( а ) = а s
| 30.10.2013, 22:33 | |
| θ ( а ) = а s , где s - любое (хоть действительное, хоть комплексное) число. Проверка аксиом 1) и 2) из определения мультипликативной функции не составляет труда, а сам пример показывает, что мультипликативных функций по меньшей мере континуум, т.е. много. Перечислим, кое-где доказывая, некоторые свойства мультипликативных функций. Пусть всюду ниже θ ( а ) - произвольная мультипликативная функция.
Свойство 1. θ (1) = 1. Доказательство. Пусть а - то самое натуральное число, для которого θ ( а ) ≠ 0. Тогда θ ( а ·1) = θ ( а ) · θ (1) = θ ( а ). Свойство 2. ![]() где р 1 , р 2 ,..., р n - различные простые числа. Доказательство очевидно. Свойство 3. Обратно, мы всегда построим некоторую мультипликативную функцию θ ( a ), если зададим θ (1) = 1 и произвольно определим θ ( р α ) для всех простых р и всех натуральных α , а для остальных натуральных чисел доопределим функцию θ ( a ) используя равенство . ![]() Доказательство сразу следует из основной теоремы арифметики. | |
| Просмотров: 320 | Загрузок: 0 | | |
| Всего комментариев: 0 | |
Категории раздела
| Математика [249] |
| Алгебра [136] |
| Геометрия [416] |
| Тригонометрия [109] |
| Задачи по теории вероятности [60] |
| Нестандартные задачи по Математике [232] |
| Задачи по комбинаторике [168] |
| Элементы математического анализа [51] |
| Смеси,Растворы , Сплавы.Проценты , Прогрессии ,Пропорции,Движение и работа [133] |
| Решение уравнений [190] |
| Функция и Графики [110] |
| Задачи на доказательство [151] |
| Задачи с параметрами [140] |
| Kоординаты и векторы [7] |
| Решение неравенств [229] |
| Разные решения одной задачи_ Одно решение разных задач [56] |
| Контрольные задачи по темам [12] |
| Формулы ,Таблицы, Правила, Теоремы [151] |
| Тесты [72] |
| Программирование [27] |
| Высшая Математика [77] |
| Теория графов [47] |
| Контрольные и самостоятельные работы пр Геометрии [344] |
Друзья сайта

