Главная » Файлы » Математика » Задачи на доказательство |
x⁴ = Ax² + Bx + C
25.10.2013, 20:42 | |
Метод Феррари. Этот метод позволяет решать произвольное уравнение 4-й степени путем сведения его к решению вспомогательного кубического уравнения и двух квадратных уравнений. а) Докажите, что любое уравнение 4 степени можно привести к виду x⁴ = Ax² + Bx + C. б) Введем действительный параметр и перепишем уравнение в виде x⁴ + 2αx² + α² = (A + 2α)x² + Bx + (C + α²). Докажите, что для некоторого ≥ −A/2 правая часть равенства превращается в полный квадрат (по переменной x). Пользуясь равенством, опишите метод нахождения корней уравнения
| |
Просмотров: 562 | Загрузок: 0 | |
Всего комментариев: 0 | |
Категории раздела
Математика [249] |
Алгебра [136] |
Геометрия [416] |
Тригонометрия [109] |
Задачи по теории вероятности [60] |
Нестандартные задачи по Математике [232] |
Задачи по комбинаторике [168] |
Элементы математического анализа [51] |
Смеси,Растворы , Сплавы.Проценты , Прогрессии ,Пропорции,Движение и работа [133] |
Решение уравнений [190] |
Функция и Графики [110] |
Задачи на доказательство [151] |
Задачи с параметрами [140] |
Kоординаты и векторы [7] |
Решение неравенств [229] |
Разные решения одной задачи_ Одно решение разных задач [56] |
Контрольные задачи по темам [12] |
Формулы ,Таблицы, Правила, Теоремы [151] |
Тесты [72] |
Программирование [27] |
Высшая Математика [77] |
Теория графов [47] |
Контрольные и самостоятельные работы пр Геометрии [344] |
Друзья сайта